DDPG-Driven Deep-Unfolding With Adaptive Depth for Channel Estimation With Sparse Bayesian Learning
نویسندگان
چکیده
Deep-unfolding neural networks (NNs) have received great attention since they achieve satisfactory performance with relatively low complexity. Typically, these deep-unfolding NNs are restricted to a fixed-depth for all inputs. However, the optimal number of layers required convergence changes different In this paper, we first develop framework deep deterministic policy gradient (DDPG)-driven adaptive depth inputs, where trainable parameters NN learned by DDPG, rather than updated stochastic descent algorithm directly. Specifically, optimization variables, parameters, and architecture designed as state, action, state transition respectively. Then, is employed deal channel estimation problem in massive multiple-input multiple-output systems. formulate an off-grid basis sparse Bayesian learning (SBL)-based solve it. Secondly, SBL-based unfolded into layer-wise structure set introduced parameters. Thirdly, proposed DDPG-driven based on algorithm. To realize depth, design halting score indicate when stop, which function reconstruction error. Furthermore, extended general (DNNs). Simulation results show that outperforms conventional algorithms DNNs fixed much reduced layers.
منابع مشابه
Improved Channel Estimation for DVB-T2 Systems by Utilizing Side Information on OFDM Sparse Channel Estimation
The second generation of digital video broadcasting (DVB-T2) standard utilizes orthogonal frequency division multiplexing (OFDM) system to reduce and to compensate the channel effects by utilizing its estimation. Since wireless channels are inherently sparse, it is possible to utilize sparse representation (SR) methods to estimate the channel. In addition to sparsity feature of the channel, the...
متن کاملSparse Bayesian Learning for DOA Estimation with Mutual Coupling
Sparse Bayesian learning (SBL) has given renewed interest to the problem of direction-of-arrival (DOA) estimation. It is generally assumed that the measurement matrix in SBL is precisely known. Unfortunately, this assumption may be invalid in practice due to the imperfect manifold caused by unknown or misspecified mutual coupling. This paper describes a modified SBL method for joint estimation ...
متن کاملchannel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
Sparse Bayesian Learning for Joint Channel Estimation and Data Detection in OFDM Systems
Bayesian approaches for sparse signal recovery have enjoyed a long-standing history in signal processing and machine learning literature. Among the Bayesian techniques, the expectation maximization based Sparse Bayesian Learning (SBL) approach is an iterative procedure with global convergence guarantee to a local optimum, which uses a parameterized prior that encourages sparsity under an eviden...
متن کاملAdaptive Sparse Channel Estimation for Time-Variant MISO Communication Systems
tec (M lea cha des exp ada LM two sig To a n (AS AS alg cha me sim est tha K nor (AS (M tec ma wa mu MI im effi rec to fre cha eac em MI Tim Abstract—Cha chnical issues MSIO) commun ast mean squ annel estimati scribed by sp ploited and th aptive sparse c MS algorithms o main drawb gnal and 2) uns o overcome the novel ASCE m SCE-NLMS). SCE method gorithm (ASCE annel sparsity ethods is conf mulat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2022
ISSN: ['1053-587X', '1941-0476']
DOI: https://doi.org/10.1109/tsp.2022.3207269